Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
J Vis Exp ; (204)2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38407215

RESUMO

Neutrophils are known as one of the first lines of defense in the innate immune response and can perform many particular cellular functions, such as chemotaxis, reverse migration, phagocytosis, degranulation of cytotoxic enzymes and metabolites, and release of DNA as neutrophil extracellular traps (NETs). Neutrophils not only have tightly regulated signaling themselves, but also participate in the regulation of other components of the immune system. As fresh neutrophils are terminally differentiated, short-lived, and highly variable among individuals, it is important to make the most of the collected samples. Researchers often need to perform screening assays to assess an overview of the many neutrophil functions that may be affected by specific conditions under evaluation. A set of tests following a single isolation process of normal density neutrophils was developed to address this need, seeking a balance between speed, comprehensiveness, cost, and accuracy. The results can be used to reason and guide in-depth follow-up studies. This procedure can be carried out in an average time of 4 h and includes the evaluation of cell viability, reactive oxygen species (ROS) production, real-time migration, and phagocytosis of yeast on glass slides, leaving enough cells for more detailed approaches like omics studies. Moreover, the procedure includes a way to easily observe a preliminary suggestion of NETs after fast panoptic staining observed by light microscopy, with a lack of specific markers, albeit enough to indicate if further efforts in that way would be worthwhile. The diversity of functions tested combines common points among tests, reducing the analysis time and expenses. The procedure was named NeutroFun Screen, and although having limitations, it balances the aforementioned factors. Furthermore, the aim of this work is not a definite test set, but rather a guideline that can easily be adjusted to each lab's resources and demands.


Assuntos
Armadilhas Extracelulares , Neutrófilos , Humanos , Fagocitose , Citodiagnóstico , Imunidade Inata
2.
Adv Exp Med Biol ; 1443: 221-242, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38409424

RESUMO

Inflammation is crucial in diseases, and proteins play a key role in the interplay between innate immunity and pathology. This review explores how proteomics helps understanding this relationship, focusing on diagnosis and treatment. We explore the dynamic innate response and the significance of proteomic techniques in deciphering the complex network of proteins involved in prevalent diseases, including infections, cancer, autoimmune and neurodegenerative disorders. Proteomics identifies key proteins in host-pathogen interactions, shedding light on infection mechanisms and inflammation. These discoveries hold promise for diagnostic tools, therapies, and vaccines. In cancer research, proteomics reveals innate signatures associated with tumor development, immune evasion, and therapeutic response. Additionally, proteomic analysis has unveiled autoantigens and dysregulation of the innate immune system in autoimmunity, offering opportunities for early diagnosis, disease monitoring, and new therapeutic targets. Moreover, proteomic analysis has identified altered protein expression patterns in neurodegenerative diseases like Alzheimer's and Parkinson's, providing insights into potential therapeutic strategies. Proteomics of the innate immune system provides a comprehensive understanding of disease mechanisms, identifies biomarkers, and enables effective interventions in various diseases. Despite still in its early stages, this approach holds great promise to revolutionize innate immunity research and significantly improve patient outcomes across a wide range of diseases.


Assuntos
Doenças Neurodegenerativas , Proteômica , Humanos , Proteômica/métodos , Imunidade Inata , Fenômenos Fisiológicos Celulares , Biomarcadores/metabolismo , Doenças Neurodegenerativas/diagnóstico , Doenças Neurodegenerativas/terapia , Inflamação
3.
J Antimicrob Chemother ; 79(1): 112-122, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37966053

RESUMO

BACKGROUND: The synthetic antimicrobial peptide, PaDBS1R1, has been reported as a powerful anti-Klebsiella pneumoniae antimicrobial. However, there is only scarce knowledge about whether K. pneumoniae could develop resistance against PaDBS1R1 and which resistance mechanisms could be involved. OBJECTIVES: Identify via label-free shotgun proteomics the K. pneumoniae resistance mechanisms developed against PaDBS1R1. METHODS: An adaptive laboratory evolution experiment was performed to obtain a PaDBS1R1-resistant K. pneumoniae lineage. Antimicrobial susceptibility was determined through microdilution assay. Modifications in protein abundances between the resistant and sensitive lineages were measured via label-free quantitative shotgun proteomics. Enriched Gene Ontology terms and KEGG pathways were identified through over-representation analysis. Data are available via ProteomeXchange with identifier PXD033020. RESULTS: K. pneumoniae ATCC 13883 parental strain challenged with increased subinhibitory PaDBS1R1 concentrations allowed the PaDBS1R1-resistant K. pneumoniae lineage to emerge. Proteome comparisons between PaDBS1R1-resistant K. pneumoniae and PaDBS1R1-sensitive K. pneumoniae under PaDBS1R1-induced stress conditions enabled the identification and quantification of 1702 proteins, out of which 201 were differentially abundant proteins (DAPs). The profiled DAPs comprised 103 up-regulated proteins (adjusted P value < 0.05, fold change ≥ 2) and 98 down-regulated proteins (adjusted P value < 0.05, fold change ≤ 0.5). The enrichment analysis suggests that PhoPQ-guided LPS modifications and CpxRA-dependent folding machinery could be relevant resistance mechanisms against PaDBS1R1. CONCLUSIONS: Based on experimental evolution and a label-free quantitative shotgun proteomic approach, we showed that K. pneumoniae developed resistance against PaDBS1R1, whereas PhoPQ-guided LPS modifications and CpxRA-dependent folding machinery appear to be relevant resistance mechanisms against PaDBS1R1.


Assuntos
Anti-Infecciosos , Infecções por Klebsiella , Humanos , Antibacterianos/farmacologia , Klebsiella pneumoniae/genética , Peptídeos Antimicrobianos , Proteômica , Lipopolissacarídeos , Anti-Infecciosos/farmacologia , Testes de Sensibilidade Microbiana
4.
Plants (Basel) ; 12(9)2023 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-37176957

RESUMO

The co-occurrence of biotic and abiotic stresses in agricultural areas severely affects crop performance and productivity. Drought is one of the most adverse environmental stresses, and its association with root-knot nematodes further limits the development of several economically important crops, such as cowpea. Plant responses to combined stresses are complex and require novel adaptive mechanisms through the induction of specific biotic and abiotic signaling pathways. Therefore, the present work aimed to identify proteins involved in the resistance of cowpea to nematode and drought stresses individually and combined. We used the genotype CE 31, which is resistant to the root-knot nematode Meloidogyne spp. And tolerant to drought. Three biological replicates of roots and shoots were submitted to protein extraction, and the peptides were evaluated by LC-MS/MS. Shotgun proteomics revealed 2345 proteins, of which 1040 were differentially abundant. Proteins involved in essential biological processes, such as transcriptional regulation, cell signaling, oxidative processes, and photosynthesis, were identified. However, the main defense strategies in cowpea against cross-stress are focused on the regulation of hormonal signaling, the intense production of pathogenesis-related proteins, and the downregulation of photosynthetic activity. These are key processes that can culminate in the adaptation of cowpea challenged by multiple stresses. Furthermore, the candidate proteins identified in this study will strongly contribute to cowpea genetic improvement programs.

5.
Biomolecules ; 13(3)2023 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-36979510

RESUMO

The number of multidrug-resistant pathogenic microorganisms has been growing in recent years, most of which is due to the inappropriate use of the commercial antibiotics that are currently available. The dissemination of antimicrobial resistance represents a serious global public health problem. Thus, it is necessary to search for and develop new drugs that can act as antimicrobial agents. Antimicrobial peptides are a promising alternative for the development of new therapeutic drugs. Anurans' skin glands are a rich source of broad-spectrum antimicrobial compounds and hylids, a large and diverse family of tree frogs, are known as an important source of antimicrobial peptides. In the present study, two novel antimicrobial peptides, named Raniseptins-3 and -6, were isolated from Boana raniceps skin secretion and their structural and biological properties were evaluated. Raniseptins-3 and -6 are cationic, rich in hydrophobic residues, and adopt an α-helix conformation in the presence of SDS (35 mM). Both peptides are active against Gram-negative bacteria and Gram-positive pathogens, with low hemolytic activity at therapeutic concentrations. No activity was observed for yeasts, but the peptides are highly cytotoxic against B16F10 murine melanoma cells and NIH3T3 mouse fibroblast cells. None of the tested compounds showed improvement trends in the MTT and LDH parameters of MHV-3 infected cells at the concentrations tested.


Assuntos
Anti-Infecciosos , Peptídeos Catiônicos Antimicrobianos , Animais , Camundongos , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Antimicrobianos , Células NIH 3T3 , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Anuros , Antibacterianos/farmacologia , Antibacterianos/análise , Testes de Sensibilidade Microbiana , Pele/química
6.
Sci Rep ; 13(1): 2602, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36788287

RESUMO

Corynebacterium glutamicum is a bacterium widely employed in the industrial production of amino acids as well as a broad range of other biotechnological products. The present study describes the characterization of C. glutamicum proteoforms, and their post-translational modifications (PTMs) employing top-down proteomics. Despite previous evidence of PTMs having roles in the regulation of C. glutamicum metabolism, this is the first top-down proteome analysis of this organism. We identified 1125 proteoforms from 273 proteins, with 60% of proteins presenting at least one mass shift, suggesting the presence of PTMs, including several acetylated, oxidized and formylated proteoforms. Furthermore, proteins relevant to amino acid production, protein secretion, and oxidative stress were identified with mass shifts suggesting the presence of uncharacterized PTMs and proteoforms that may affect biotechnologically relevant processes in this industrial workhorse. For instance, the membrane proteins mepB and SecG were identified as a cleaved and a formylated proteoform, respectively. While in the central metabolism, OdhI was identified as two proteoforms with potential biological relevance: a cleaved proteoform and a proteoform with PTMs corresponding to a 70 Da mass shift.


Assuntos
Corynebacterium glutamicum , Espectrometria de Massas em Tandem , Corynebacterium glutamicum/metabolismo , Proteômica , Processamento de Proteína Pós-Traducional , Proteoma/metabolismo
7.
Viruses ; 15(2)2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36851755

RESUMO

Papaya sticky disease is caused by the association of a fusagra-like and an umbra-like virus, named papaya meleira virus (PMeV) and papaya meleira virus 2 (PMeV2), respectively. Both viral genomes are encapsidated in particles formed by the PMeV ORF1 product, which has the potential to encode a protein with 1563 amino acids (aa). However, the structural components of the viral capsid are unknown. To characterize the structural proteins of PMeV and PMeV2, virions were purified from Carica papaya latex. SDS-PAGE analysis of purified virus revealed two major proteins of ~40 kDa and ~55 kDa. Amino-terminal sequencing of the ~55 kDa protein and LC-MS/MS of purified virions indicated that this protein starts at aa 263 of the deduced ORF1 product as a result of either degradation or proteolytic processing. A yeast two-hybrid assay was used to identify Arabidopsis proteins interacting with two PMeV ORF1 product fragments (aa 321-670 and 961-1200). The 50S ribosomal protein L17 (AtRPL17) was identified as potentially associated with modulated translation-related proteins. In plant cells, AtRPL17 co-localized and interacted with the PMeV ORF1 fragments. These findings support the hypothesis that the interaction between PMeV/PMeV2 structural proteins and RPL17 is important for virus-host interactions.


Assuntos
Proteínas do Capsídeo , Carica , Aminoácidos , Capsídeo , Proteínas do Capsídeo/genética , Cromatografia Líquida , Látex , Espectrometria de Massas em Tandem , Vírus de RNA/genética
8.
Front Immunol ; 13: 1004023, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36451835

RESUMO

The present study applied distinct models of descriptive analysis to explore the integrative networks and the kinetic timeline of serum soluble mediators to select a set of systemic biomarkers applicable for the clinical management of COVID-19 patients. For this purpose, a total of 246 participants (82 COVID-19 and 164 healthy controls - HC) were enrolled in a prospective observational study. Serum soluble mediators were quantified by high-throughput microbeads array on hospital admission (D0) and at consecutive timepoints (D1-6 and D7-20). The results reinforce that the COVID-19 group exhibited a massive storm of serum soluble mediators. While increased levels of CCL3 and G-CSF were associated with the favorable prognosis of non-mechanical ventilation (nMV) or discharge, high levels of CXCL10 and IL-6 were observed in patients progressing to mechanical ventilation (MV) or death. At the time of admission, COVID-19 patients presented a complex and robust serum soluble mediator network, with a higher number of strong correlations involving IFN-γ, IL-1Ra and IL-9 observed in patients progressing to MV or death. Multivariate regression analysis demonstrates the ability of serum soluble mediators to cluster COVID-19 from HC. Ascendant fold change signatures and the kinetic timeline analysis further confirmed that the pairs "CCL3 and G-CSF" and "CXCL10 and IL-6" were associated with favorable or poor prognosis, respectively. A selected set of systemic mediators (IL-6, IFN-γ, IL-1Ra, IL-13, PDGF and IL-7) were identified as putative laboratory markers, applicable as complementary records for the clinical management of patients with severe COVID-19.


Assuntos
COVID-19 , Proteína Antagonista do Receptor de Interleucina 1 , Humanos , COVID-19/terapia , Interleucina-6 , Cinética , Fator Estimulador de Colônias de Granulócitos
9.
Cells ; 11(18)2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36139464

RESUMO

This review will briefly outline the major signaling pathways in PMA-activated neutrophils. PMA is widely used to understand neutrophil pathways and formation of NETs. PMA activates PKC; however, we highlight some isoforms that contribute to specific functions. PKC α, ß and δ contribute to ROS production while PKC ßII and PKC ζ are involved in cytoskeleton remodeling. Actin polymerization is important for the chemotaxis of neutrophils and its remodeling is connected to ROS balance. We suggest that, although ROS and production of NETs are usually observed together in PMA-activated neutrophils, there might be a regulatory mechanism balancing both. Interestingly, we suggest that serine proteases might determine the PAD4 action. PAD4 could be responsible for the activation of the NF-κB pathway that leads to IL-1ß release, triggering the cleavage of gasdermin D by serine proteases such as elastase, leading to pore formation contributing to release of NETs. On the other hand, when serine proteases are inhibited, NETs are formed by citrullination through the PAD4 pathway. This review puts together results from the last 31 years of research on the effects of PMA on the neutrophil and proposes new insights on their interpretation.


Assuntos
Armadilhas Extracelulares , Neutrófilos , Actinas/metabolismo , Armadilhas Extracelulares/metabolismo , NF-kappa B/metabolismo , Neutrófilos/metabolismo , Elastase Pancreática/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Serina Proteases/metabolismo , Acetato de Tetradecanoilforbol/farmacologia
10.
Front Plant Sci ; 13: 947558, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36161018

RESUMO

Erythrina velutina is a Brazilian native tree of the Caatinga (a unique semiarid biome). It is widely used in traditional medicine showing anti-inflammatory and central nervous system modulating activities. The species is a rich source of specialized metabolites, mostly alkaloids and flavonoids. To date, genomic information, biosynthesis, and regulation of flavonoids remain unknown in this woody plant. As part of a larger ongoing research goal to better understand specialized metabolism in plants inhabiting the harsh conditions of the Caatinga, the present study focused on this important class of bioactive phenolics. Leaves and seeds of plants growing in their natural habitat had their metabolic and proteomic profiles analyzed and integrated with transcriptome data. As a result, 96 metabolites (including 43 flavonoids) were annotated. Transcripts of the flavonoid pathway totaled 27, of which EvCHI, EvCHR, EvCHS, EvCYP75A and EvCYP75B1 were identified as putative main targets for modulating the accumulation of these metabolites. The highest correspondence of mRNA vs. protein was observed in the differentially expressed transcripts. In addition, 394 candidate transcripts encoding for transcription factors distributed among the bHLH, ERF, and MYB families were annotated. Based on interaction network analyses, several putative genes of the flavonoid pathway and transcription factors were related, particularly TFs of the MYB family. Expression patterns of transcripts involved in flavonoid biosynthesis and those involved in responses to biotic and abiotic stresses were discussed in detail. Overall, these findings provide a base for the understanding of molecular and metabolic responses in this medicinally important species. Moreover, the identification of key regulatory targets for future studies aiming at bioactive metabolite production will be facilitated.

11.
Data Brief ; 43: 108433, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35859787

RESUMO

Here we describe the proteome of the fungus Hemileia vastatrix by label free mass spectrometry (LC-MS/MS). H. vastatrix is the causal agent of coffee rust disease, causing great economic losses in this crop. The objective of our work was to identify H. vastatrix proteins potentially involved in host colonization and infection, by exploring the shotgun proteomics approach. A total of 742 proteins were identified and are associated with several crucial molecular functions, biological processes, and cellular components. The proteins identified contribute to a better understanding of the metabolism of the fungus and may help identify target proteins for the development of specific drugs in order to control coffee rust disease. All data can be accessed at the Centre for Computational Mass Spectrometry - MassIVE MSV000087665 -https://massive.ucsd.edu/ProteoSAFe/dataset.jsp?task=cc71ad75f767451abe72dd1ce0019387.

12.
Front Mol Biosci ; 9: 824989, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35813822

RESUMO

Biologically active peptides have been attracting increasing attention, whether to improve the understanding of their mechanisms of action or in the search for new therapeutic drugs. Wasp venoms have been explored as a remarkable source for these molecules. In this review, the main findings on the group of wasp linear cationic α-helical peptides called mastoparans were discussed. These compounds have a wide variety of biological effects, including mast cell degranulation, activation of protein G, phospholipase A2, C, and D activation, serotonin and insulin release, and antimicrobial, hemolytic, and anticancer activities, which could lead to the development of new therapeutic agents.

13.
Front Oncol ; 12: 833068, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35814389

RESUMO

Myelodysplastic syndrome (MDS) is a hematological disorder characterized by abnormal stem cell differentiation and a high risk of acute myeloid leukemia transformation. Treatment options for MDS are still limited, making the identification of molecular signatures for MDS progression a vital task. Thus, we evaluated the proteome of bone marrow plasma from patients (n = 28) diagnosed with MDS with ring sideroblasts (MDS-RS) and MDS with blasts in the bone marrow (MDS-EB) using label-free mass spectrometry. This strategy allowed the identification of 1,194 proteins in the bone marrow plasma samples. Polyubiquitin-C (UBC), moesin (MSN), and Talin-1 (TLN1) showed the highest abundances in MDS-EB, and centrosomal protein of 55 kDa (CEP55) showed the highest relative abundance in the bone marrow plasma of MDS-RS patients. In a follow-up, in the second phase of the study, expressions of UBC, MSN, TLN1, and CEP55 genes were evaluated in bone marrow mononuclear cells from 45 patients by using qPCR. This second cohort included only seven patients from the first study. CEP55, MSN, and UBC expressions were similar in mononuclear cells from MDS-RS and MDS-EB individuals. However, TLN1 gene expression was greater in mononuclear cells from MDS-RS (p = 0.049) as compared to MDS-EB patients. Irrespective of the MDS subtype, CEP55 expression was higher (p = 0.045) in MDS patients with abnormal karyotypes, while MSN, UBC, and TALIN1 transcripts were similar in MDS with normal vs. abnormal karyotypes. In conclusion, proteomic and gene expression approaches brought evidence of altered TLN1 and CEP55 expressions in cellular and non-cellular bone marrow compartments of patients with low-risk (MDS-RS) and high-risk (MDS-EB) MDSs and with normal vs. abnormal karyotypes. As MDS is characterized by disrupted apoptosis and chromosomal alterations, leading to mitotic slippage, TLN1 and CEP55 represent potential markers for MDS prognosis and/or targeted therapy.

14.
J Proteomics ; 261: 104575, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35351660

RESUMO

Cowpea (Vigna unguiculata L. Walp) is a legume of great economic importance, however it is highly affected by nematodes. The present work aimed to identify proteins and genes involved in nematode resistance by proteomic and transcriptomic analysis. Plants of a genotype resistant (CE31) to root-knot nematode (Meloidogyne spp.) were collected 12 days after inoculation with Meloidogyne incognita and the total proteins and RNA were extracted from the root samples. Shotgun proteomic analysis was performed using an Orbitrap Elite mass spectrometer and the construction and sequencing of cDNA libraries were carried out in a Hi-Seq 2000 sequencing system. The proteomic and transcriptomic analyses revealed key processes involved in cowpea defense and some interesting candidates were further analyzed by RT-qPCR. Proteins and genes involved in essential biological processes were differentially accumulated such as, regulation of transcription, cell wall stiffening and microtubule-based process. However, the main defense strategies of Vigna unguiculata seem to be focused on the interaction of NBS-LRR and WRKY genes for the activation of R genes, production of protease inhibitors and maintenance of actin cytoskeleton. These are key processes that can culminate in the suppression of giant cell formation and consequently in the development of Meloidogyne incognita. SIGNIFICANCE: In this study, we identified proteins and transcripts regulated in cowpea resistant to the nematode Meloidogyne spp. upon inoculation. The results revealed key candidate genes involved in the activation of R genes, the production of protease inhibitors and maintenance of the actin cytoskeleton. These processes might be essential for cowpea resistance, as they can impede nematode nutrition, giant cell formation and consequently the development of Meloidogyne incognita.


Assuntos
Tylenchoidea , Vigna , Animais , Doenças das Plantas , Raízes de Plantas/metabolismo , Inibidores de Proteases/metabolismo , Proteômica , Tylenchoidea/fisiologia , Vigna/genética
15.
Life Sci ; 295: 120377, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35131235

RESUMO

AIMS: We evaluated the role of intergenerational paternal exercise on fibrosis, inflammatory profile, and redox status in the adipose tissue of male rat offspring fed with high-fat diet (HFD) and explored to what extent programming affects the systemic metabolic profile. MAIN METHODS: Adult wistar rats were randomly divided into two groups: sedentary fathers and trained fathers (8 weeks of resistance training (RT), three times per week). The offspring were obtained by mating with sedentary females. Upon weaning, male offspring were divided into four groups (7 animals per group): offspring of sedentary fathers exposed to either a control diet (SFO-C) or a high-fat diet (SFO-HF); offspring of trained fathers exposed to a control diet (TFO-C) or a high-fat diet (TFO-HF). KEY FINDINGS: Paternal RT was effective in attenuating body weight gain, adipocyte size, collagen deposition, as well as downregulating genes (CTGF, VEGF, C/EBPα SREBP1, MCP-1, and NF-kB), pro-inflammatory cytokine levels (Tumor Necrosis Factor alpha and Interleukin-1-beta), matrix metalloproteinase -2 activity, and ROS production in the epididymal adipose tissue of offspring fed with HFD (TFO-HF vs. SFO-HF; P < 0.05). Moreover, paternal RT increased adiponectin and superoxide dismutase (SOD) activity in the tissue. These beneficial effects were accompanied by the increase of antioxidant enzymes (SOD and α-Klotho), while decreasing pro-oxidant agents (F2-isoprostanes, protein carbonyls levels), and metabolic markers (insulin and leptin, HOMA-ß, and HOMA-IR) in the offspring blood circulation. SIGNIFICANCE: Our findings reveal protective effects of intergenerational paternal RT on adipose tissue remodeling and metabolic health of offspring fed with HFD.


Assuntos
Tecido Adiposo/fisiologia , Fibrose/fisiopatologia , Herança Paterna/fisiologia , Animais , Peso Corporal , Citocinas/metabolismo , Dieta Hiperlipídica , Pai , Fibrose/prevenção & controle , Insulina/metabolismo , Interleucina-1beta/metabolismo , Masculino , Obesidade/metabolismo , Oxirredução , Exposição Paterna , Condicionamento Físico Animal/métodos , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio , Treinamento de Força , Aumento de Peso
16.
PLoS One ; 17(1): e0262600, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35030224

RESUMO

In patients with severe forms of COVID-19, thromboelastometry has been reported to display a hypercoagulant pattern. However, an algorithm to differentiate severe COVID-19 patients from nonsevere patients and healthy controls based on thromboelastometry parameters has not been developed. Forty-one patients over 18 years of age with positive qRT-PCR for SARS-CoV-2 were classified according to the severity of the disease: nonsevere (NS, n = 20) or severe (S, n = 21). A healthy control (HC, n = 9) group was also examined. Blood samples from all participants were tested by extrinsic (EXTEM), intrinsic (INTEM), non-activated (NATEM) and functional assessment of fibrinogen (FIBTEM) assays of thromboelastometry. The thrombodynamic potential index (TPI) was also calculated. Severe COVID-19 patients exhibited a thromboelastometry profile with clear hypercoagulability, which was significantly different from the NS and HC groups. Nonsevere COVID-19 cases showed a trend to thrombotic pole. The NATEM test suggested that nonsevere and severe COVID-19 patients presented endogenous coagulation activation (reduced clotting time and clot formation time). TPI data were significantly different between the NS and S groups. The maximum clot firmness profile obtained by FIBTEM showed moderate/elevated accuracy to differentiate severe patients from NS and HC. A decision tree algorithm based on the FIBTEM-MCF profile was proposed to differentiate S from HC and NS. Thromboelastometric parameters are a useful tool to differentiate the coagulation profile of nonsevere and severe COVID-19 patients for therapeutic intervention purposes.


Assuntos
Coagulação Sanguínea , COVID-19/sangue , Tromboelastografia , Trombofilia/sangue , Adulto , Idoso , Algoritmos , COVID-19/complicações , COVID-19/diagnóstico , Feminino , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , SARS-CoV-2/isolamento & purificação , Índice de Gravidade de Doença , Trombofilia/diagnóstico , Trombofilia/etiologia , Adulto Jovem
17.
Biochim Biophys Acta Proteins Proteom ; 1869(8): 140657, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33839315

RESUMO

A better understanding of the proteome profile after bipolar disorder (BD) and schizophrenia (SCZ) treatment, besides monitoring disease progression, may assist on the development of novel therapeutic strategies with the ability to reduce or control possible side effects. In this pilot study, proteomics analysis employing nano liquid chromatography coupled to mass spectrometry (nLC-MS) and bioinformatic tools were applied to identify differentially abundant proteins in serum of treated BD and SCZ patients. In total, 10 BD patients, 10 SCZ patients, and 14 healthy controls (HC) were included in this study. 24 serum proteins were significantly altered (p < 0.05) in BD and SCZ treated patients and, considering log2FC > 0.58, 8 proteins presented lower abundance in the BD group, while 7 proteins presented higher abundance and 2 lower abundance in SCZ group when compared against HC. Bioinformatics analysis based on these 24 proteins indicated two main altered pathways previously described in the literature; furthermore, it revealed that opposite abundances of the complement and coagulation cascades were the most significant biological processes involved in these pathologies. Moreover, we describe disease-related proteins and pathways associations suggesting the necessity of clinical follow-up improvement besides treatment, as a precaution or safety measure, along with the disease progression. Further biological validation and investigations are required to define whether there is a correlation between complement and coagulation cascade expression for BD and SCZ and cardiovascular diseases.


Assuntos
Transtorno Bipolar/patologia , Fatores de Coagulação Sanguínea/análise , Proteínas do Sistema Complemento/análise , Esquizofrenia/patologia , Adulto , Biomarcadores Farmacológicos , Transtorno Bipolar/sangue , Transtorno Bipolar/imunologia , Fatores de Coagulação Sanguínea/metabolismo , Proteínas Sanguíneas/análise , Cromatografia Líquida/métodos , Proteínas do Sistema Complemento/metabolismo , Biologia Computacional/métodos , Feminino , Perfilação da Expressão Gênica/métodos , Humanos , Masculino , Espectrometria de Massas/métodos , Projetos Piloto , Proteômica/métodos , Esquizofrenia/sangue , Esquizofrenia/imunologia
18.
J Proteomics ; 241: 104223, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33845181

RESUMO

A comparative proteomic analysis between two near-isogenic rice lines, displaying a resistant and susceptible phenotype upon infection with Magnaporthe oryzae was performed. We identified and validated factors associated with rice disease susceptibility, representing a flourishing source toward a more resolute rice-blast resistance. Proteome profiles were remarkably different during early infection (12 h post-inoculation), revealing several proteins with increased abundance in the compatible interaction. Potential players of rice susceptibility were selected and gene expression was evaluated by RT-qPCR. Gene Ontology analysis disclosed susceptibility gene-encoded proteins claimed to be involved in fungus sustenance and suppression of plant immunity, such as sucrose synthase 4-like, serpin-ZXA-like, nudix hydrolase15, and DjA2 chaperone protein. Two other candidate genes, picked from a previous transcriptome study, were added into our downstream analysis including pyrabactin resistant-like 5 (OsPYL5), and rice ethylene-responsive factor 104 (OsERF104). Further, we validated their role in susceptibility by Transient-Induced Gene Silencing (TIGS) using short antisense oligodeoxyribonucleotides that resulted in a remarkable reduction of foliar disease symptoms in the compatible interaction. Therefore, we successfully employed shotgun proteomics and antisense-based gene silencing to prospect and functionally validate rice potential susceptibility factors, which could be further explored to build rice-blast resistance. SIGNIFICANCE: R gene-mediated disease resistance is race-specific and often not durable in the field. More recently, advancements in new breeding techniques (NBTs) have made plant disease susceptibility genes (S-genes) a new target to build a broad spectrum and more durable resistance, hence an alternative source to R-genes in breeding programs. We successfully coupled shotgun proteomics and gene silencing tools to prospect and validate new rice-bast susceptibility genes that can be further exploited toward a more resolute blast disease resistance.


Assuntos
Magnaporthe , Oryza , Ascomicetos , Resistência à Doença/genética , Inativação Gênica , Magnaporthe/metabolismo , Oryza/genética , Oryza/metabolismo , Melhoramento Vegetal , Doenças das Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteômica
19.
JMIR Res Protoc ; 10(3): e24211, 2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33661132

RESUMO

BACKGROUND: Since the beginning of the COVID-19 pandemic, the world's attention has been focused on better understanding the relation between the human host and the SARS-CoV-2 virus, as its action has led to hundreds of thousands of deaths. OBJECTIVE: In this context, we decided to study certain consequences of the abundant cytokine release over the innate and adaptive immune systems, inflammation, and hemostasis, comparing mild and severe forms of COVID-19. METHODS: To accomplish these aims, we will analyze demographic characteristics, biochemical tests, immune biomarkers, leukocyte phenotyping, immunoglobulin profile, hormonal release (cortisol and prolactin), gene expression, thromboelastometry, neutralizing antibodies, metabolic profile, and neutrophil function (reactive oxygen species production, neutrophil extracellular trap production, phagocytosis, migration, gene expression, and proteomics). A total of 200 reverse transcription polymerase chain reaction-confirmed patients will be enrolled and divided into two groups: mild/moderate or severe/critical forms of COVID-19. Blood samples will be collected at different times: at inclusion and after 9 and 18 days, with an additional 3-day sample for severe patients. We believe that this information will provide more knowledge for future studies that will provide more robust and useful clinical information that may allow for better decisions at the front lines of health care. RESULTS: The recruitment began in June 2020 and is still in progress. It is expected to continue until February 2021. Data analysis is scheduled to start after all data have been collected. The coagulation study branch is complete and is already in the analysis phase. CONCLUSIONS: This study is original in terms of the different parameters analyzed in the same sample of patients with COVID-19. The project, which is currently in the data collection phase, was approved by the Brazilian Committee of Ethics in Human Research (CAAE 30846920.7.0000.0008). TRIAL REGISTRATION: Brazilian Registry of Clinical Trials RBR-62zdkk; https://ensaiosclinicos.gov.br/rg/RBR-62zdkk. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/24211.

20.
Microbiol Res ; 247: 126730, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33662850

RESUMO

Aerobic organisms require oxygen for energy. In the course of the infection, adaptation to hypoxia is crucial for survival of human pathogenic fungi. Members of the Paracoccidioides complex face decreased oxygen tensions during the life cycle stages. In Paracoccidioides brasiliensis proteomic responses to hypoxia have not been investigated and the regulation of the adaptive process is still unknown, and this approach allowed the identification of 216 differentially expressed proteins in hypoxia using iTRAQ-labelling. Data suggest that P. brasiliensis reprograms its metabolism when submitted to hypoxia. The fungus reduces its basal metabolism and general transport proteins. Energy and general metabolism were more representative and up regulated. Glucose is apparently directed towards glycolysis or the production of cell wall polymers. Plasma membrane/cell wall are modulated by increasing ergosterol and glucan, respectively. In addition, molecules such as ethanol and acetate are produced by this fungus indicating that alternative carbon sources probably are activated to obtain energy. Also, detoxification mechanisms are activated. The results were compared with label free proteomics data from Paracoccidioides lutzii. Biochemical pathways involved with acetyl-CoA, pyruvate and ergosterol synthesis were up-regulated in both fungi. On the other hand, proteins from TCA, transcription, protein fate/degradation, cellular transport, signal transduction and cell defense/virulence processes presented different profiles between species. Particularly, proteins related to methylcitrate cycle and those involved with acetate and ethanol synthesis were increased in P. brasiliensis proteome, whereas GABA shunt were accumulated only in P. lutzii. The results emphasize metabolic adaptation processes for distinct Paracoccidioides species.


Assuntos
Hipóxia/metabolismo , Paracoccidioides/metabolismo , Proteoma/metabolismo , Proteômica , Parede Celular/metabolismo , Ergosterol/biossíntese , Proteínas Fúngicas/genética , Proteínas Fúngicas/isolamento & purificação , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Glicólise , Humanos , Peróxido de Hidrogênio/metabolismo , Nitrogênio/metabolismo , Paracoccidioides/genética , Paracoccidioides/patogenicidade , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...